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SUMMARY

This paper describes a method for obtaining a time continuous reduced order model (ROM) from a
system of time continuous linear di�erential equations. These equations are �rst put into a time discrete
form using a �nite di�erence approximation. The unit sample responses of the discrete system are
calculated for each system input and these provide the Markov parameters of the system. An eigenvalue
realization algorithm (ERA) is used to construct a discrete ROM. This ROM is then used to obtain a
continuous ROM of the original continuous system. The focus of this paper is on the application of
this method to the calculation of unsteady �ows using the linearized Euler equations on moving meshes
for aerofoils undergoing heave or linearized pitch motions. Applying a standard cell-centre spatial
discretization and taking account of mesh movement a continuous system of di�erential equations is
obtained which are continuous in time. These are put into discrete time form using an implicit �nite
di�erence approximation. Results are presented demonstrating the e�ciency of the system reduction
method for this system. Copyright ? 2003 John Wiley & Sons, Ltd.

1. INTRODUCTION

Unsteady �ows about �exible structures occur in many areas. The focus of the work described
here is the stability and responses of �xed wing aircraft. Theoretical prediction of unsteady
�ows require models of both the �uid motion and the structure. This paper is concerned
with modelling the �uid motion. It describes early results of an ongoing program of work.
The objective is to develop an e�cient computational �uid model which permits aeroelastic
calculations to be performed at much lower cost than is possible with full non-linear methods
(see for example References [1–5]) whilst retaining reasonable accuracy. The full non-linear
methods which typically have many thousands of degrees of freedom are too computationally
expensive for use in industry. This is due to the fact that many thousands of parameter
variations must be investigated. For an extensive review of �uid motion modelling from
classical methods through to recent developments see Dowell and Hall Reference [6].
A �rst step in achieving improved e�ciency for aeroelastic applications has been the use

of time-linearized schemes. Such schemes model an unsteady �ow as the sum of a steady
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582 A. L. GAITONDE AND D. P. JONES

base �ow and a small dynamic perturbation. Depending on the choice of steady base �ow
model it may be possible to include many physical phenomena, for example shock waves, 3D
vorticity and separated �ows. However due to the assumption of a small dynamic perturbation
any dynamic changes to these features must be small.
The particular base �ows of interest to this work are statically non-linear, but the overall

method is dynamically linear and therefore limit cycle oscillations due to �uid non-linearity
cannot be modelled. However LCOs caused by structural non-linearity can be calculated [7].
Schemes of this type do not contain a mechanism to allow changes in the �ow structure
during the unsteady calculation [8], so for example if a shock is not present in the mean �ow
it cannot arise during the dynamic calculation.
Here the base �ow is calculated using the non-linear Euler equations. Calculating unsteady

�ows by processing a general input through the unsteady time-linearized Euler equations
presents no signi�cant advance on the full non-linear equations as the number of degrees
of freedom is the same. However there are two strategies which utilize these equations to
provide improved e�ciency over full non-linear calculations and are therefore useful tools for
aeroelastic/aeroservoelastic analyses.
The �rst approach (not used in this work) assumes all perturbations to be harmonic and has

been the focus of many studies, particularly in the �eld of turbomachinery, see References
[8–15]. This reduces the problem to a steady-state calculation for the perturbation at a given
frequency. This frequency can be chosen to be the natural frequency of vibration in a linear
aeroelastic model under static load. If a better aeroelastic model or a non-linear structural
model is required then calculations must be performed at a range of frequencies. From this
data a model of the solution in the frequency domain or time domain is obtained.
The construction of reduced order models (ROMs) using harmonic perturbation solutions

has been achieved for a variety of �ow equations via a number of techniques, most prominently
via eigenmode summation and proper orthogonal decomposition [16]. Eigenmode summation
has been used to reduce both the full potential [17] and Euler [18] equations. However,
the application of proper orthogonal decomposition is increasingly investigated with models
constructed for; a vortex lattice method [19], the full potential equations [17, 20], the Euler
equations [21, 22] and the full potential equations coupled with an integral boundary layer
model [23, 24]. Further improvements via balanced proper orthogonal decomposition [25] have
also been obtained.
In the second approach, the one used in this work, the discrete time pulse responses (sample

responses) of the unsteady linearized Euler system are calculated. Once the pulse responses
of any linear system of equations are known the response of the same set of equations to
any input can be predicted by convolution of the sample responses. The theory is described
in detail by Silva [26], who applied the method to a full non-linear CFD scheme. Unlike the
current work which calculates the sample response directly, Silva approximated the sample
response of the linear system by using two sample responses of the non-linear system and
assuming that the non-linearity was no more than second order. This work has been further
developed by Raveh [27] and subsequently Silva [28] who showed that the sample response
to an impulse in heave velocity for the AGARD 445.6 wing seemed sensitive to the choice of
both time step size and the impulse amplitude used. The current method uses the linearized
Euler equations and seems insensitive to the impulse amplitude, provided it is not so large as
to cause unphysical surface pressures. It would be expected that both techniques would share
the same time step dependence. However, no time step dependence has been found in this
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or previous work [29, 30]. It is possible that the problems observed in References [27, 28]
are a result of the fact the amplitude of the velocity pulse is a function of the time step and
increases as the time step decreases. In the present work the velocity pulse amplitude is not
a function of time step.
The computational e�ciency of constructing a ROM using the convolution of sample

responses is inversely proportional to the number of time steps calculated. It was found
when reconstructing solutions for non-periodic motions that long sample response histories
were required. The number of time steps required could be reduced by �tting an exponen-
tially decaying component to the end of a truncated sample response but this seemed too ad
hoc. Inspection of the sample responses suggested only a few modes were dominant, therefore
standard system identi�cation techniques could produce ROMs from smaller sample response
histories than reconstruction via convolution.
Here, using a �nite di�erence approximation to the time derivative the continuous equations

are put into discrete form. The sample responses are in fact the discrete system Markov
parameters and can be used to generate the Hankel matrices of the discrete system. The
Eigensystem Realization Algorithm (ERA) [31], is used to realize the discrete time linearized
unsteady aerodynamic system. ERA’s are commonly used to realize or identify discrete-time
state-space systems that describe the modal dynamics of a structure. The ERA requires a
singular value decomposition of one of the Hankel matrices and a discrete ROM, of rank n,
can then be obtained by retaining only the �rst n singular values. This results in a reduction
in the number of unknowns from tens of thousands to tens. A similar approach has been used
by Silva and Raveh [32]. This discrete system realization and any ROMs are valid for only
one time step size. This �xed time step means that the discrete ROM cannot be accurately
applied to structural models with discrete non-linearities (such as freeplay in a control surface).
Any aerodynamic model must capture the ‘switching’ points between discrete regions [33] or
unphysical limit cycle behaviour may be introduced into the solution [34]. Hence, since this
is the type of problem for which the current method is being developed, the discrete model
is merely used to derive a continuous ROM.
The mapping of the full continuous system matrices to the full discrete system matrices is

one-to-one, so the inverse mapping is applied to the discrete ROM to give a valid continuous
ROM. All the terms of the continuous system will be present if the ROM is large enough,
but the size of time step and Hankel matrix used to derive the ROM will a�ect which terms
are neglected. This, reduced, continuous model could then be put into a discrete form for
varying time steps and=or di�erent �nite di�erence schemes.

2. CONTINUOUS LINEAR EULER EQUATIONS

The system reduction scheme described here could be applied to any suitable set of continuous
linear di�erential equations. Here the linearized Euler equations (also sometimes called the
small disturbance Euler equations) on moving meshes for an aerofoil which can undergo heave
or linearized pitch motions are considered [29, 30]. It should be noted that these equations are
spatially discrete, but continuous in time. For simplicity throughout this paper references to
continuous or discrete models=systems indicate only the time dependent nature of the system.
First a steady reference state is calculated from the full non-linear integral Euler equations

using a standard cell-centred �nite-volume scheme [35]. Unsteady solutions are found by
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regarding �ow quantities as the sum of the steady or mean �ow solution and an unsteady
perturbation. The unsteady Euler equations are then linearized assuming that all unsteady
perturbations, grid displacements and speeds are small. No assumption is made about the form
of the perturbations. The non-linearity of the �ow is contained in the steady solution and is
therefore present in the unsteady solution. The boundary conditions are obtained by linearizing
the actual boundary conditions used in the full unsteady code from which the linearized scheme
is derived. The conditions used in the full code at walls are �ow tangency, density set equal
to that at the centre of the �rst cell adjacent to the wall and pressure is extrapolated using
values in three cells adjacent to the wall. At the far�eld boundary Riemann invariant boundary
conditions are used. Details of the linearization process are given by Gaitonde and Jones [29].
The state-space representation of this system is given by

ẋ(t) =Ax(t) + Bu(t)

y(t) =Cx(t) +Du(t)
(1)

A;B;C and D are the system matrices. The input vector u and the state-vector x are given
by

u=



h
�

ḣ
�̇


x=




�̂2;2
û2;2
v̂2;2
p̂2;2
·
·
·

�̂imax; jmax
ûimax; jmax
v̂imax; jmax
p̂imax; jmax




(2)

where h is the heave displacement, � is the pitch angle, �̂ û, v̂ and p̂ are the changes from the
mean values of the density, speeds and pressure. Note that the scheme considered here is a cell
centred one, with centres inside the computational domain labelled i=2; imax, j=2; jmax.
The vector y is the output and is de�ned to produce the required information about the

linear system. An example of a suitable y is

y=



Ĉ l
Ĉd
Ĉm


 (3)

where Ĉ l, Ĉd and Ĉm are the changes in the lift, drag and moment coe�cients from the mean
values.
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Then provided the entries of Du(t) are continuous for t¿0, the output equation can be
written as

y(t) =
∫ t

0
H(t − �)u(�) d� (4)

Note the matrix H(t) has, as its ith column, the output response of the system for a unit
impulse input �(t) on the ith component of u.
It can be shown [36] that

y(t)=Du(t) +
∫ t

0

(
CB+

t − �
1!

CAB+
(t − �)2
2!

CA2B+ · · ·
)
u(�) d�

y(t)=H0u(t) +
∫ t

0

(
H1 +

t − �
1!

H2 +
(t − �)2
2!

H3 + · · ·
)
u(�) d�

(5)

where the sequence of matrices Hk ; k = 0;∞
{H0;H1;H2; : : : ;Hk ; : : :}= {D;CB;CAB; : : : ;CAk−1B; : : :} (6)

is called the weighting sequence, the impulse-response sequence or the Markov sequence of
the system. Given the continuous-time impulse response matrix H(t), the Hk are de�ned by

Hk =
dk−1

dtk−1
H(t)

∣∣∣∣
t=0+

k ¿ 1

H0 =
∫ 0+

0−
H(t) dt

(7)

If the Markov parameters of a continuous system are known, then it is possible to construct
the generalized Hankel matrix Hrs(k)

Hrs(k)=




CAkB CAk+t1B CAk+t2B · · · CAk+ts−1B

CAk+j1B CAk+t1+j1B CAk+t2+j1B · · · CAk+ts−1+j1B
· · · ·
· · · ·
· · · ·

CAk+jr−1B CAk+t1+jr−1B CAk+t2+jr−1B · · · CAk+ts−1+jr−1B




(8)

where ji(i = 1; r−1) and ti(i = 1; s−1) are arbitrary integers to allow for a random distribution
of Markov parameters [31], so

Hrs(k − 1)=




Hk Hk+t1 Hk+t2 · · · Hk+ts−1

Hk+j1 Hk+t1+j1 Hk+t2+j1 · · · Hk+ts−1+j1

· · · ·
· · · ·
· · · ·

Hk+jr−1 Hk+t1+jr−1 Hk+t2+jr−1 · · · Hk+ts−1+jr−1




(9)
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From this matrix it is possible to realize and reduce the system matrices [31]. The information
required to construct this matrix is not always directly available.

3. A DISCRETE APPROXIMATION TO THE CONTINUOUS LINEAR SYSTEM

The continuous linearized Euler equations (1) are generally solved by putting them into a
discrete form using a �nite di�erence approximation to the original di�erential equations of
the system (1). A previously developed code [29] was used as the basis for the work described
here. It is modi�ed to use a simple �rst order implicit approximation to the time derivative
so

x̃k − x̃k−1
�t

=Ax̃k + Bũk

ỹk =Cx̃k +Dũk
(10)

where x̃; ũ and ỹ are discrete approximations to the state, input and output vectors, respectively.
On rearranging this becomes

x̃k = Ãx̃k−1 + B̃ũk
ỹk = C̃x̃k + D̃ũk

(11)

where the discrete system matrices are given by

Ã= (I −A�t)−1
B̃= (I −A�t)−1B�t
C̃=C

D̃=D

(12)

This can be solved using one-sided z-transforms [37, 38] to give the output equation

ỹ(k)=
k∑
n=0
H̃(k − n)ũn (13)

The matrix H̃(k) is composed of columns which are the outputs for a unit sample pulse
input (see Figure 1) on each input channel separately, i.e. the ith column is the output vector
at time k for a unit sample input in the ith component of ũ with all other entries of ũ set to
zero, see Aplevich [36].
Then if x̃−1 = 0 it follows from (11) that

ỹ0 = C̃B̃ũ0 + D̃ũ0
ỹ1 = C̃ÃB̃ũ0 + C̃B̃ũ1 + D̃ũ1

ỹ2 = C̃Ã
2
B̃ũ0 + C̃ÃB̃ũ1 + C̃B̃ũ2 + D̃ũ2

ỹ3 = C̃Ã
3
B̃ũ0 + C̃Ã

2
B̃ũ1 + C̃ÃB̃ũ2 + C̃B̃ũ3 + D̃ũ3

(14)
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Figure 1. Unit sample pulse function
∑
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Thus

ỹl=[C̃Ã
l
B̃; C̃Ã

l−1
B̃; : : : ; C̃Ã

2
B̃; C̃ÃB̃; C̃B̃+ D̃]




ũ0
ũ1
·
·
·
ũl−2
ũl−1
ũl




(15)

The following sequence Hk ; k = 0;∞

{H0;H1;H2; : : : ;Hk ; : : :}= {D̃+ C̃B̃; C̃ÃB̃; : : : ; C̃ÃkB̃; : : :} (16)

is the Markov sequence of the discrete system. The forced response of the discrete system
is uniquely determined by its Markov sequence and the input. Thus any two systems with
identical weighting sequences have identical forced responses for the same input. Note that
for a system of rank n the sequence Hk ; k=0; 2n speci�es the forced response exactly.
The system realization method described by Juang and Pappa relies on being able to con-

struct the generalized Hankel matrix with the structure given in Equation (8) replacing continu-
ous matrices with the discrete system matrices. For this implicit �nite di�erence approximation
it is possible to construct the required matrix by modifying the system since D and thus D̃ are
known matrices. For both the continuous system and the discrete approximation a modi�ed
output is de�ned by subtracting the term Du(t) from the continuous output and the term D̃ũ
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from the discrete output equation. The modi�ed discrete system is then

x̃k = Ãx̃k−1 + B̃ũk
ỹ′k = ỹk − D̃ũk = C̃x̃k

(17)

Then

ỹ′l=[C̃Ã
l
B̃; C̃Ã

l−1
B̃; : : : ; C̃Ã

2
B̃; C̃ÃB̃; C̃B̃]




ũ0
ũ1
·
·
·
ũl−2
ũl−1
ũl




(18)

and the modi�ed Markov sequence is

{H0;H1;H2; : : : ;Hk ; : : :}= {C̃B̃; C̃ÃB̃; : : : ; C̃ÃkB̃; : : :} (19)

The Hankel matrix in this case is the r× s block matrix given by

Hrs(k)=




Hk Hk+t1 Hk+t2 · · · Hk+ts−1

Hk+j1 Hk+t1+j1 Hk+t2+j1 · · · Hk+ts−1+j1

· · · ·
· · · ·
· · · ·

Hk+jr−1 Hk+t1+jr−1 Hk+t2+jr−1 · · · Hk+ts−1+jr−1




(20)

It is common to actually set ji= i and ti= i so that the Hankel matrix is

Hrs(k)=




Hk Hk+1 Hk+2 · · · Hk+s−1
Hk+1 Hk+2 Hk+3 · · · Hk+s

· · · ·
· · · ·
· · · ·

Hk+r−1 Hk+r Hk+r+1 · · · Hk+s+r−2




(21)

The continuous (9) and implicit (20) de�nitions of Hrs(k) di�er in their relationship to the
Markov parameters, however when the expressions for these parameters in terms of A;B;C
or Ã; B̃; C̃ are substituted then in both cases Hrs(k) has the same form. This matrix can be
used to realise and reduce the system matrices [31].
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4. SYSTEM REALIZATION AND REDUCTION

The Eigenvalue Realization Algorithm [31] provides a method for the system matrices (contin-
uous or discrete) to be realized or identi�ed provided the Hankel matrices can be constructed.
This requires only knowledge of the Markov parameters of the system.
Focusing on the discrete system, the Markov parameters are matrices with columns equal

to the value of the output vector ỹ′ for unit sample impulses on each component of ũ in turn.
Note that the triple [Ã; B̃; C̃] is not unique and that for any non-singular matrix T the triple
[TÃT−1;TB̃; C̃T−1] is also a realization. Only a brief outline of the theory is given here.
Given that the Hankel matrices are available the next step is to carry out a singular value
decomposition (SVD) of Hrs(0). It is necessary to identify the size of this matrix. If there are
p outputs and m inputs to the system then each of the Markov parameters is of size p×m.
Thus the size of the Hankel matrix is rp× sm. Then the SVD is given by

Hrs(0) = UWV
T (22)

where W is an sm× sm diagonal matrix whose diagonal entries are called singular values
which are either positive or zero, U is rp× sm and V is a sm× sm matrix. The SVD scheme
is such that the elements of W are in size order i.e. [w(1; 1)¿w(2; 2)¿w(3; 3) · · ·]. The rank
of the reduced order model of the system is then determined by the number of elements of
W which are larger than some desired accuracy or by taking into account only the n largest
singular values in W. Then partitioning the matrices

Hrs(0) = [PP
′]

[
�n×n On×sm−n
Orp−n×n �′

rp−n×sm−n

]
[QQ′]T

=P�QT + P′�′Q′T (23)

Now if matrix Hrs(0) can be approximated as

Hrs(0) = P�QT (24)

then matrices U;W;V can be reduced in size by deleting unnecessary columns and rows as
appropriate. The reduced matrix from U is P : rp× n, the reduced matrix from W is � : n× n
and the reduced matrix from V is Q : sm× n.
It is then possible to show [31] that a realization is

Ã=�−1=2PTHrs(1)Q�
−1=2

B̃=�1=2QTEm
C̃=ETpP�

1=2

(25)

where Ep = [Ip; 0p; 0p; : : : ; 0p] has size p× rp and ETm=[Im; 0m; 0m; : : : ; 0m] has size m× sm.
Thus it is possible to obtain a discrete ROM from the unit sample responses of the discrete
CFD scheme. This model could be used for a range of test cases. It would however �x the
discretization scheme used and the time step for the output.
A ROM of the continuous system is obtained by applying the inverse of the relationship

between the continuous and discrete system matrices (12) to the discrete ROM matrices.
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This is a valid realization of the continuous system. However the terms which have been
omitted from the reduced size discrete system Hankel matrix may not be exactly the same
terms which would have been omitted from the equivalent continuous Hankel matrix. In other
words there may be some di�erences between a rank n system (n¡rank(A)) obtained from
the discrete system Hankel matrix and a rank n system obtained directly from the continuous
system Hankel matrix. However it is probable that the dominant terms will be correctly
predicted. Since all the terms of the continuous system would be present for a su�ciently
large realization, by taking an appropriately sized ROM a continuous ROM of acceptable
accuracy can be obtained. This continuous system ROM could be used with di�erent time
steps and even di�erent �nite di�erence schemes.

5. SYSTEM INPUT CHANNELS

In this section the required independent input channels for motions which are a combina-
tion of arbitrary heave and linearized pitch motions are identi�ed and the required inputs to
the program given. Note that whilst in the above a unit impulse applied at time zero was
considered, the input can actually be applied at any time k�t and be of any size (with the
corresponding response in the convolution sum scaled accordingly). In some cases an im-
pulse of unit size might be too large as the pressures may become negative during the initial
pseudo-time iterations leading to divergence of the numerical scheme. Thus a much smaller
size of impulse is applied. Note that since the linearized code made no assumption about the
form of the grid perturbations or speeds a wider range of problems may be tackled directly
than is possible with a linearized harmonic code.
For the motions considered here, the displacement at any time is

�x= ( �y − bc)�amp(t)
�y=−( �x − ac)�amp(t) + h(t)

(26)

and the speeds are

ẋ= ( �y − bc)�̇amp(t)
ẏ=−( �x − ac)�̇amp(t) + ḣ(t)

(27)

There are four associated input channels for this �ow, the pulse inputs are given in Table I
where c1; c2; c3 and c4 are scaling constants. These scaling constants were necessary because
putting a unit size pulse on each input could lead to divergence of the numerical scheme. The
scheme at each real time step imposes the wall boundary conditions in full at the start of the
pseudo time iterations. If the imposed displacement or speed was too large this could lead to
unphysical negative pressures at the start of the calculations which could lead to failure of
the solution process. It was found that unit angle motion in degrees was acceptable, but unit
heave or speeds was too large. Due to the fact that the scheme is linear the solution for any
input is just a scaled to produce the solution at any other input. Thus smaller values were
thus used for some quantities to ensure easy convergence of the numerical scheme.
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Table I. Channel inputs to the linearized Euler equations for heave and linearized pitch motions.

Channel 1 Channel 2 Channel 3 Channel 4 All Channels
h ḣ � �̇ h; ḣ; �; �̇

t= k�t t= k�t t= k�t t= k�t t �= k�t
�x 0 0 ( �y − bc)c3 0 0
�y c1 0 −( �x − ac)c3 0 0
xt 0 0 0 ( �y − bc)c4 0
yt 0 c2 0 −( �x − ac)c4 0

6. RESULTS

The test cases shown here are for a NACA64A010 aerofoil with freestream Mach number
M∞=0:796. The grid used for the majority of calculations is of size 191× 36, this means
that the number of unknowns is 26 600. A steady calculation is performed for the aerofoil at
incidence �=0◦. The steady �ow is symmetric and has a shockwave near the midchord, see
Figures 2 and 3.
The sample responses for each of the four input channels are calculated (two for heave

and two for linear pitch) see Figure 4. The non-dimensional time step used to calculate
these responses is �t1 = (�tdim1 =c)

√
p∞=�∞=0:23 where the superscript dim represents the

dimensional quantity and c is the chord. Note that the scaling constants used are c1 = 0:1,
c2 = 0:1, c3 =�=180 and c4 = 0:38�=180. These sample responses were then used to generate
continuous ROMs of the �ow.

6.1. Pulse responses with di�erent time steps

As an initial test the continuous ROMs, created using a pulse width of �t1, were used to
calculate sample responses for pulses of di�erent e�ective widths, �t. In other words by
using a di�erent time step and applying a unit sample function on each input channel the
�nite di�erence scheme sees a pulse of di�erent duration or width. For the �rst case shown
in Figure 5 the time step used is �t=�t1=5 and for the second case shown in Figure 6 the
time step used is �t=5�t1. Results from a full linearized Euler calculation and two ROMs
of di�erent sizes calculated from Hankel matrices using the �rst 40 terms of the sample
responses are shown. In both �gures there is good agreement between the � sample responses
calculated from the rank 22 ROM and the linearized Euler solution. This illustrates the fact
that the continuous ROM obtained from the discrete ROM with a particular time step can
be discretized for both larger and smaller time steps and solved to give good solutions. The
responses for input on the other input channels yield similar results.

6.2. Heave motions

The �rst heave motion is de�ned in dimensional variables by

h(t)= hmax sin(!t) (28)
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Figure 2. Mean grid.
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Figure 3. Mean solution, pressure coe�cient distribution.

the amplitude of the motion is hmax=c=0:05, and the reduced frequency is kred = 0:202. The
reduced frequency is de�ned [39] as

kred =
!c
2U∞

(29)

The second motion considered is for a ramp in heave given in dimensional variables by

h(t)=0 t¡0

h(t)= hmax(1− t2rat[2− t2rat]) 06t62tramp
h(t)=0 t¿2tramp

(30)

where trat = (t − tramp)=tramp and tramp is the ramp time. For the current case hmax=c=0:01 and
the non-dimensional ramp time tndramp =5.
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Figure 4. Sample responses calculated with time step �t1 = 0:23 (a) � pulse,
(b) �̇ pulse, (c) h pulse and (d) ḣ pulse.
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Figure 5. Comparison of � sample responses calculated directly from the linear
Euler scheme and from ROMs for �t=�t1=5.
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Figure 7. Comparison of solutions for an oscillatory heave motion calculated directly from the linear
Euler scheme, from ROMs and from reconstructed summations.

For these cases comparisons between the linearized Euler solution, a ROM solution and
solutions reconstructed by convolution of the unit sample responses with the general input
are shown in Figures 7 and 8, respectively. The ROM used has rank 22 and was constructed
using the �rst 40 Markov parameters (i.e. the �rst 40 terms of the sample responses). Two
reconstructed solutions are calculated from truncated convolution summations using the �rst
40 and 80 Markov parameters. In both cases the ROM solution is in excellent agreement
with the linear Euler solution. For the �rst test case the convolved solution using the same
number of Markov parameters does show some di�erences, however using more terms leads
to improved agreement. In the second test case both the convolved solutions deviate from the
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Figure 8. Comparison of solutions for a ramp heave motion calculated directly from the linear Euler
scheme, from ROMs and from reconstructed summations.
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linear Euler solution. The main reason for this is that the input to the system beyond the ramp
is zero and so the only contribution to the convolution sum is from the ramp region which
has non-zero input. Thus since these terms are multiplied by the Markov parameters which
are furthest in time, when the number of Markov parameters used is truncated these non-zero
terms are no longer included and inaccuracy results. A small number of Markov parameters
can be forced to yield convolved solutions with improved accuracy provided an exponentially
decaying component is �tted to the end of the truncated sample response.

6.3. Heave and linear pitch motion

The �nal case considered is a �ow which is a combination of heave and linear pitch motions.
The heave motion is an up and down ramp de�ned by Equation (30) with tramp =5 and
hmax=c=0:1. The pitch angle � undergoes a sinusoidal oscillation

�(t)= �m + �0 sin(!t) (31)

where �m=0◦, �0 = 0:5◦ and kred = 0:202. The axis of rotation is located at x=c=0:25.
This test case was calculated using both the usual 191× 36 mesh and a �ner 241× 48 mesh.

Using the �rst 40 Markov parameters continuous ROMs of various ranks are generated. The
solutions are shown in Figures 9 and 10 for the coarse and �ne meshes, respectively. In both
cases, the lift perturbation coe�cient is well predicted with a system of rank as low as 6,
however the moment perturbation coe�cient is not accurately predicted by the rank 6 system.
Good agreement is achieved by the rank 14 and rank 22 systems. It can be seen that the
trends are the same on both meshes. These results are consistent with Epureanu et al. [20]
who observed that less accurate POD modes (from a small number of snapshots of the �ow in
the frequency domain) can be used provided that an increased number of degrees of freedom
are used.
The instantaneous pressure distributions predicted by the full dynamically linear code at

four times are shown in Figure 11. Pressure distributions are not available from the ROM
since the only outputs are force coe�cient values. These are the outputs which provide the
required information for coupling with a simple structural model [7]. If a more sophisticated
structural model was required then for example aerofoil surface pressures could be the ROM
outputs. These pressure distributions illustrate the e�ects of the motion on the shock.
The rank of the system is then �xed at 14 and ROMs are generated using Hankel matrices

of various sizes (or di�erent numbers of Markov Parameters). The solutions are shown in
Figures 12 and 13 with the block size of the Hankel matrix indicated (the number of Markov
parameters required equals the sum of the number of block rows and columns). Note that each
block is of size 3× 4. For the 191× 36 mesh, it can be seen that when using a 10× 10 block
Hankel matrix (the smallest possible for the current problem to generate a rank 14 ROM) the
solution is unstable. For the other ROMs generated using larger Hankel matrices the solutions
are stable and are in close agreement with the linear Euler solution. For the 241× 48 mesh
the solutions are all stable but the rank 6 solution is in poor agreement with the linear Euler
solution. For the coarse mesh the Hankel singular values are shown in Figure 14 for the three
Hankel matrices shown in Figure 12 together with those for a larger Hankel matrix of block
size 25× 25. It can be seen that as the size of the Hankel matrix increases, so there is a
convergence of the calculated singular values. The instability of the ROM produced from the
smallest Hankel matrix is possibly due to the fact that some of the singular values retained
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Figure 9. Comparison of solutions ROMs of various ranks calculated from the
same Hankel matrix. Coarse mesh 191× 36.

are not predicted accurately enough. This observation is similar to that of Epureanu et al. [20]
who found that for POD that increasing the number of snapshots in the frequency domain
improved the accuracy of POD modes.
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Figure 12. Comparison of solutions for rank 14 ROMs calculated from di�erent
Hankel matrices. Coarse mesh 191× 36.

7. CONCLUSIONS

The method described in this paper for obtaining continuous ROMs of a linear CFD scheme
has been shown to work and o�ers the possibility of e�cient and �exible predictions of
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Hankel matrices. Fine mesh 241× 48.
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Figure 14. Singular values of Hankel matrix constructed using 20, 30, 40, 50 Markov parameters.

unsteady �ows. The number of system unknowns is signi�cantly reduced (from tens of thou-
sands to tens for the test cases shown) and unlike discrete ROMs it can potentially be used
with di�erent time steps and �nite di�erent schemes. Since the number of unknowns required
appears to be very small it represents a viable tool for structural coupling. Good agreement
has recently been found between full-non-linear solutions and ROMs coupled with a structural
model [7, 41]. The ROMs can be used to calculate LCOs due to structural non-linearities, but
not those due to aerodynamic non-linearities. The work outlined here is part of an ongoing
program. Further work is necessary to consider the e�ect of the time step size used in the
calculation of pulse responses on the continuous ROM and the range of frequencies for which
it is valid. Work is also currently being undertaken to look at obtaining continuous ROMs
by either directly constructing the continuous Hankel matrix from the system matrices or by
using a discrete explicit scheme [41]. Another area for future investigation is suggested by the
work of Tang et al. [40] for a vortex lattice �ow model. They obtain a continuous ROM from
a discrete ROM by assuming that the discrete system is linked with a continuous system by
the mapping commonly used in signal processing. This assumes that the output of the discrete
scheme matches exactly the output of the continuous system at discrete time steps for a step-
wise matched input. This would not truely be the case unless the continuous equations had
been discretized in the required manner, which is not stated by Tang et al. However it appears
to yield a reasonable system and thus is worthy of further investigation for the current scheme.
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